viernes, 12 de diciembre de 2008

Reles

Figura 1
Figura 2




Relé
De Wikipedia, la enciclopedia libre
Figura 1.- Relé enchufable para pequeñas potencias

Figura 2.- Funcionamiento de un relé


El relé o relevador (del francés relais, relevo) es un dispositivo electromecánico, que funciona como un interruptor controlado por un circuito eléctrico en el que, por medio de un electroimán, se acciona un juego de uno o varios contactos que permiten abrir o cerrar otros circuitos eléctricos independientes. Fue inventado por Joseph Henry en 1835 Ya que el relé es capaz de controlar un circuito de salida de mayor potencia que el de entrada, puede considerarse, en un amplio sentido, una forma de amplificador eléctrico. Como tal se emplearon en telegrafía, haciendo la función de repetidores que generaban una nueva señal con corriente procedente de pilas locales a partir de la señal débil recibida por la línea. Se les llamaba "relevadores". De ahí "relé".


Contactos
Los contactos de un relé pueden ser Normalmente Abiertos (NA o NO (Normally Open)), por sus siglas en inglés), Normalmente Cerrados (Normally Closed)(NC) o de conmutación.
Los contactos Normalmente Abiertos conectan el circuito cuando el relé es activado; el circuito se desconecta cuando el relé está inactivo. Este tipo de contactos son ideales para aplicaciones en las que se requiere conmutar fuentes de poder de alta intensidad para dispositivos remotos.
Los contactos Normalmente Cerrados desconectan el circuito cuando el relé es activado; el circuito se conecta cuando el relé está inactivo. Estos contactos se utilizan para aplicaciones en las que se requiere que el circuito permanezca cerrado hasta que el relé sea activado.
Los contactos de conmutación controlan dos circuitos: un contacto Normalmente Abierto y uno Normalmente Cerrado con una terminal común.
En la Figura 1 se puede ver el aspecto de un relé enchufable para pequeñas potencias. Hay dos tipos de relés:1. relé informático y 2.relé mecánico En la Figura 2 se representa, de forma esquemática, la disposición de los elementos de un relé de un único contacto de trabajo.Se denominan contactos de trabajo aquellos que se cierran cuando la bobina del relé es alimentada y contactos de reposo a lo cerrados en ausencia de alimentación de la misma.
Existen multitud de tipos distintos de relés, dependiendo del número de contactos (cuando tienen más de un contacto conmutador se les llama contactores en lugar de relés), intensidad admisible por los mismos, tipo de corriente de accionamiento, tiempo de activación y desactivación, etc.

Relé de corriente alterna .Cuando se excita la bobina de un relé con corriente alterna, el flujo magnético en el circuito magnético, también es alterno, produciendo una fuerza pulsante, con frecuencia doble, sobre los contactos. Es decir, los contactos de un relé conectado a la red, en Europa oscilarán a 50 Hz. Este hecho se aprovecha en algunos timbres y zumbadores. En un relé de corriente alterna se modifica la resonancia de los contactos para que no oscilen. Funciona como un activador a distancia. Es un electro iman que se une por medio de dos plaquetas

Relé de láminas .Este tipo de relé se utilizaba para discriminar distintas frecuencias. Consiste en un electroimán excitado con la corriente alterna de entrada que atrae varias varillas sintonizadas para resonar a sendas frecuencias de interés. La varilla que resuena acciona su contacto; las demás, no. El desarrollo de la microelectrónica y los PLL integrados ha relegado estos componentes al olvido.
Los relés de láminas se utilizaron en aeromodelismo y otros sistemas de telecontrol.
Los núcleos de todas las máquinas de corriente alterna son laminados para reducir las pérdidas por corrientes parásitas.

Ventajas del uso de relés.
La gran ventaja de los relés es la completa separación eléctrica entre la corriente de accionamiento (la que circula por la bobina del electroimán) y los circuitos controlados por los contactos, lo que hace que se puedan manejar altos voltajes o elevadas potencias con pequeñas tensiones de control.
Posibilidad de control de un dispositivo a distancia mediante el uso de pequeñas señales de control.

Relé de estado sólido.
Se llama relé de estado sólido a un circuito híbrido, normalmente compuesto por un optoacoplador que aísla la entrada, un circuito de disparo, que detecta el paso por cero de la corriente de línea y un triac o dispositivo similar que actúa de interruptor de potencia. Su nombre se debe a la similitud que presenta con un relé electromecánico; este dispositivo es usado generalmente para aplicaciones donde se presenta un uso continuo de los contactos del relé que en comparación con un relé convencional generaría un serio desgaste mecánico.

Polímetro



Polímetro

Qué es
El polímetro es un instrumento que permite verificar el perfecto funcionamiento de un circuito eléctrico. Mide tensiones alternas y continuas, corrientes, resistencias, etc. Afortunadamente, su producción en masa ha abaratado el precio de este tipo de aparatos, y en la actualidad se pueden adquirir en cualquier gran superficie.

Para qué sirve
El polímetro permite medir principalmente voltios de corriente continua y alterna, valores de resistencias, test de conductividad de pistas y cables y ganancia de transistores.

Tipos
Hay dos tipos de polímetros: los digitales y los analógicos. Los digitales son más precisos porque la medición que se señala en la pantalla es exacta. En cambio, en los analógicos aparecen marcadas mediante un modulador cuya aguja señala el dato.

Componentes y funcionamiento
Un polímetro analógico genérico o estándar suele tener los siguientes componentes:
- Conmutador alterna-continua (AC/DC): permite seleccionar una u otra opción dependiendo de la tensión (continua o alterna).
- Interruptor rotativo: permite seleccionar funciones y escalas. Girando este componente se consigue seleccionar la magnitud (tensión, intensidad, etc.) y el valor de escala.
- Ranuras de inserción de condensadores: es donde se debe insertar el condensador cuya capacidad se va a medir.
- Orificio para la Hfe de los transistores: permite insertar el transistor cuya ganancia se va a medir.
- Entradas: en ellas se conectan las puntas de medida.
Habitualmente, los polímetros analógicos poseen cuatro bornes (aunque también existen de dos), uno que es el común, otro para medir tensiones y resistencias, otro para medir intensidades y otro para medir intensidades no mayores de 20 amperios.

Precaución
Los polímetros analógicos empleados normalmente en electricidad y muchos de los utilizados en electrónica están ajustados para indicar la tensión eficaz de señales senoidales. Para ello hacen uso de la relación fija entre la tensión eficaz y la media, que es la que realmente miden, de las ondas senoidales. La medición por tanto no es exacta, normalmente es menor. Este problema se solventa utilizando polímetros digitales que obtienen el valor real de la tensión.

Diodo

Diodo



Tipos de diodos de estado sólido
Diodo de alto vacío

Un diodo (del griego "dos caminos") es un dispositivo semiconductor que permite el paso de la corriente eléctrica en una única dirección con características similares a un interruptor. De forma simplificada, la curva característica de un diodo (I-V) consta de dos regiones: por debajo de cierta diferencia de potencial, se comporta como un circuito abierto (no conduce), y por encima de ella como un corto circuito con muy pequeña resistencia eléctrica.

Debido a este comportamiento, se les suele denominar rectificadores, ya que son dispositivos capaces de convertir una corriente alterna en corriente continua. Su principio de funcionamiento está basado en los experimentos de Lee De Forest.

Los primeros diodos eran válvulas grandes en chips o tubos de vacío, también llamadas válvulas termoiónicas constituidas por dos electrodos rodeados de vacío en un tubo de cristal, con un aspecto similar al de las lámparas incandescentes. El invento fue realizado en 1904 por John Ambrose Fleming, de la empresa Marconi, basándose en observaciones realizadas por Thomas Alva Edison.- Al igual que las lámparas incandescentes, los tubos de vacío tienen un filamento (el cátodo) a través del que circula la corriente, calentándolo por efecto Joule. El filamento está tratado con óxido de bario, de modo que al calentarse emite electrones al vacío circundante; electrones que son conducidos electrostáticamente hacia una placa característica corvada por un muelle doble cargada positivamente (el ánodo), produciéndose así la conducción. Evidentemente, si el cátodo no se calienta, no podrá ceder electrones. Por esa razón los circuitos que utilizaban válvulas de vacío requerían un tiempo para que las válvulas se calentaran antes de poder funcionar y las válvulas se quemaban con mucha facilidad.


Tipos de válvula diodo

Diodo pn o Unión pn

Los diodos pn, son uniones de dos materiales semiconductores extrínsecos tipos p y n, por lo que también reciben la denominación de unión pn. Hay que destacar que ninguno de los dos cristales por separado tiene carga eléctrica, ya que en cada cristal, el número de electrones y protones es el mismo, de lo que podemos decir que los dos cristales, tanto el p como el n, son neutros. (Su carga neta es 0).

Formación de la zona de carga espacial

Al unir ambos cristales, se manifiesta una difusión de electrones del cristal n al p (Je).

Al establecerse estas corrientes aparecen cargas fijas en una zona a ambos lados de la unión, zona que recibe diferentes denominaciones como zona de carga espacial, de agotamiento, de deplexión, de vaciado, etc.

A medida que progresa el proceso de difusión, la zona de carga espacial va incrementando su anchura profundizando en los cristales a ambos lados de la unión. Sin embargo, la acumulación de iones positivos en la zona n y de iones negativos en la zona p, crea un campo eléctrico (E) que actuará sobre los electrones libres de la zona n con una determinada fuerza de desplazamiento, que se opondrá a la corriente de electrones y terminará deteniéndolos.

Este campo eléctrico es equivalente a decir que aparece una diferencia de tensión entre las zonas p y n. Esta diferencia de potencial (V0) es de 0,7 V en el caso del silicio y 0,3 V si los cristales son de germanio.

La anchura de la zona de carga espacial una vez alcanzado el equilibrio, suele ser del orden de 0,5 micras pero cuando uno de los cristales está mucho más dopado que el otro, la zona de carga espacial es mucho mayor.

Al dispositivo así obtenido se le denomina diodo, que en un caso como el descrito, tal que no se encuentra sometido a una diferencia de potencial externa, se dice que no está polarizado. Al extremo p, se le denomina ánodo, representándose por la letra A, mientras que la zona n, el cátodo, se representa por la letra C (o K).

Existen también diodos de protección térmica los cuales son capaces de proteger cables.

A (p) C ó K (n)
Representación simbólica del diodo pn

Cuando se somete al diodo a una diferencia de tensión externa, se dice que el diodo está polarizado, pudiendo ser la polarización directa o inversa.

Polarización directa

Polarización directa del diodo pn.

En este caso, la batería disminuye la barrera de potencial de la zona de carga espacial, permitiendo el paso de la corriente de electrones a través de la unión; es decir, el diodo polarizado directamente conduce la electricidad.

Para que un diodo esté polarizado directamente, tenemos que conectar el polo positivo de la batería al ánodo del diodo y el polo negativo al cátodo. En estas condiciones podemos observar que:

  • El polo negativo de la batería repele los electrones libres del cristal n, con lo que estos electrones se dirigen hacia la unión p-n.
  • El polo positivo de la batería atrae a los electrones de valencia del cristal p, esto es equivalente a decir que empuja a los huecos hacia la unión p-n.
  • Cuando la diferencia de potencial entre los bornes de la batería es mayor que la diferencia de potencial en la zona de carga espacial, los electrones libres del cristal n, adquieren la energía suficiente para saltar a los huecos del cristal p, los cuales previamente se han desplazado hacia la unión p-n.
  • Una vez que un electrón libre de la zona n salta a la zona p atravesando la zona de carga espacial, cae en uno de los múltiples huecos de la zona p convirtiéndose en electrón de valencia. Una vez ocurrido esto el electrón es atraído por el polo positivo de la batería y se desplaza de átomo en átomo hasta llegar al final del cristal p, desde el cual se introduce en el hilo conductor y llega hasta la batería.

De este modo, con la batería cediendo electrones libres a la zona n y atrayendo electrones de valencia de la zona p, aparece a través del diodo una corriente eléctrica constante hasta el final.

Polarización inversa

Polarización inversa del diodo pn.

En este caso, el polo negativo de la batería se conecta a la zona p y el polo positivo a la zona n, lo que hace aumentar la zona de carga espacial, y la tensión en dicha zona hasta que se alcanza el valor de la tensión de la batería, tal y como se explica a continuación:

  • El polo positivo de la batería atrae a los electrones libres de la zona n, los cuales salen del cristal n y se introducen en el conductor dentro del cual se desplazan hasta llegar a la batería. A medida que los electrones libres abandonan la zona n, los átomos pentavalentes que antes eran neutros, al verse desprendidos de su electrón en el orbital de conducción, adquieren estabilidad (8 electrones en la capa de valencia, ver semiconductor y átomo) y una carga eléctrica neta de +1, con lo que se convierten en iones positivos.
  • El polo negativo de la batería cede electrones libres a los átomos trivalentes de la zona p. Recordemos que estos átomos sólo tienen 3 electrones de valencia, con lo que una vez que han formado los enlaces covalentes con los átomos de silicio, tienen solamente 7 electrones de valencia, siendo el electrón que falta el denominado hueco. El caso es que cuando los electrones libres cedidos por la batería entran en la zona p, caen dentro de estos huecos con lo que los átomos trivalentes adquieren estabilidad (8 electrones en su orbital de valencia) y una carga eléctrica neta de -1, convirtiéndose así en iones negativos.
  • Este proceso se repite una y otra vez hasta que la zona de carga espacial adquiere el mismo potencial eléctrico que la batería.

En esta situación, el diodo no debería conducir la corriente; sin embargo, debido al efecto de la temperatura se formarán pares electrón-hueco (ver semiconductor) a ambos lados de la unión produciendo una pequeña corriente (del orden de 1 μA) denominada corriente inversa de saturación. Además, existe también una denominada corriente superficial de fugas la cual, como su propio nombre indica, conduce una pequeña corriente por la superficie del diodo; ya que en la superficie, los átomos de silicio no están rodeados de suficientes átomos para realizar los cuatro enlaces covalentes necesarios para obtener estabilidad. Esto hace que los átomos de la superficie del diodo, tanto de la zona n como de la p, tengan huecos en su orbital de valencia con lo que los electrones circulan sin dificultad a través de ellos. No obstante, al igual que la corriente inversa de saturación, la corriente superficial de fuga es despreciable.

Curva característica del diodo

  • Tensión umbral, de codo o de partida (Vγ ).
    La tensión umbral (también llamada barrera de potencial) de polarización directa coincide en valor con la tensión de la zona de carga espacial del diodo no polarizado. Al polarizar directamente el diodo, la barrera de potencial inicial se va reduciendo, incrementando la corriente ligeramente, alrededor del 1% de la nominal. Sin embargo, cuando la tensión externa supera la tensión umbral, la barrera de potencial desaparece, de forma que para pequeños incrementos de tensión se producen grandes variaciones de la intensidad de corriente.
  • Corriente máxima (Imax ).
    Es la intensidad de corriente máxima que puede conducir el diodo sin fundirse por el efecto Joule. Dado que es función de la cantidad de calor que puede disipar el diodo, depende sobre todo del diseño del mismo.
  • Corriente inversa de saturación (Is ).
    Es la pequeña corriente que se establece al polarizar inversamente el diodo por la formación de pares electrón-hueco debido a la temperatura, admitiéndose que se duplica por cada incremento de 10º en la temperatura.
  • Corriente superficial de fugas.
    Es la pequeña corriente que circula por la superficie del diodo (ver polarización inversa), esta corriente es función de la tensión aplicada al diodo, con lo que al aumentar la tensión, aumenta la corriente superficial de fugas.
  • Tensión de ruptura (Vr ).
    Es la tensión inversa máxima que el diodo puede soportar antes de darse el efecto avalancha.

Teóricamente, al polarizar inversamente el diodo, este conducirá la corriente inversa de saturación; en la realidad, a partir de un determinado valor de la tensión, en el diodo normal o de unión abrupta la ruptura se debe al efecto avalancha; no obstante hay otro tipo de diodos, como los Zener, en los que la ruptura puede deberse a dos efectos:

  • Efecto avalancha (diodos poco dopados). En polarización inversa se generan pares electrón-hueco que provocan la corriente inversa de saturación; si la tensión inversa es elevada los electrones se aceleran incrementando su energía cinética de forma que al chocar con electrones de valencia pueden provocar su salto a la banda de conducción. Estos electrones liberados, a su vez, se aceleran por efecto de la tensión, chocando con más electrones de valencia y liberándolos a su vez. El resultado es una avalancha de electrones que provoca una corriente grande. Este fenómeno se produce para valores de la tensión superiores a 6 V.
  • Efecto Zener (diodos muy dopados). Cuanto más dopado está el material, menor es la anchura de la zona de carga. Puesto que el campo eléctrico E puede expresarse como cociente de la tensión V entre la distancia d; cuando el diodo esté muy dopado, y por tanto d sea pequeño, el campo eléctrico será grande, del orden de 3·105 V/cm. En estas condiciones, el propio campo puede ser capaz de arrancar electrones de valencia incrementándose la corriente. Este efecto se produce para tensiones de 4 V o menores.

Para tensiones inversas entre 4 y 6 V la ruptura de estos diodos especiales, como los Zener, se puede producir por ambos efectos.

Modelos matemáticos

El modelo matemático más empleado es el de Shockley (en honor a William Bradford Shockley) que permite aproximar el comportamiento del diodo en la mayoría de las aplicaciones. La ecuación que liga la intensidad de corriente y la diferencia de potencial es:

I=I_S \left( {e^{qV_D \over nkT}-1} \right)

Donde:

  • I es la intensidad de la corriente que atraviesa el diodo
  • VD es la diferencia de tensión entre sus extremos.
  • IS es la corriente de saturación (aproximadamente 10 − 12A)
  • q es la carga del electrón cuyo valor es 1.6 * 10 − 19
  • T es la temperatura absoluta de la unión
  • k es la constante de Boltzmann
  • n es el coeficiente de emisión, dependiente del proceso de fabricación del diodo y que suele adoptar valores entre 1 (para el germanio) y del orden de 2 (para el silicio).
  • El término VT = kT/q = T/11600 es la tensión debida a la temperatura, del orden de 26 mV a temperatura ambiente (300 K ó 27 ºC).

Con objeto de evitar el uso de exponenciales (a pesar de ser uno de los modelos más sencillos), en ocasiones se emplean modelos más simples aún, que modelan las zonas de funcionamiento del diodo por tramos rectos; son los llamados modelos de continua o de Ram-señal que se muestran en la figura. El más simple de todos (4) es el diodo ideal.

viernes, 28 de noviembre de 2008


Tanto las paredes de la caja del ascensor como la cabina, serán construidas con contrachapado de 2mm pegadas con cola de carpintero y fijadas a una base de aglomerado. Se ha de prestar especial atención en la construcción de los orificios para la cuerda de arrastre y los finales de carrera.
Los finales de carrera se pueden construir con encuadernadores, ya que aportan la suficiente elasticidad como para cerrar el contacto una vez que se cesa la acción sobre ellos.

Para evitar que la cabina se caiga por su propio peso, es necesario colocar en el eje del motor un tornillo sinfín, acoplado sobre la rueda dentada que mueve el eje principal.
.
.

Se partirá de un diseño básico con una llave de cruce, al que se le añadirán progresivamente los operadores necesarios para solucionar los problemas que vayan surgiendo. La finalidad de este planteamiento será conseguir un circuito lo más económico y fiable posible.
Proceso de diseño:
1. Fase
Lo que queremos hacer:
Invertir el sentido de giro del motor para bajar y subir la cabina.
El circuito:
Utilizaremos una llave de cruce de la forma indicada en la figura.
.
Problemas de funcionamiento:
El conmutador permite subir y bajar la cabina del ascensor, pero cuando ésta llega a uno de sus extremos la parada ha de realizarse de forma visual desconectando manualmente la alimentación del motor.
Solución:
Introducir un operador que sea capaz de detectar las dos posiciones extremas del ascensor.
2. Fase
Lo que queremos hacer:
Parar de forma automática el motor cuando la cabina se encuentra en las partes superior e inferior del ascensor.
El circuito:
Añadiremos un nuevo dispositivo llamado final de carrera. Este es similar un pulsador. La diferencia entre ambos es que el pulsador es accionado por el operario y el FC es accionado por la propia máquina, en este caso la cabina del ascensor, Este nuevo operador permitirá conocer la posición exacta del ascensor y condicionar el funcionamiento del circuito.
Problemas de funcionamiento:
El control del motor está limitado a un solo punto, situado en el lugar donde se encuentre la llave de cruce.
Solución:
Insertar los operadores necesarios al circuito para que la cabina pueda ser controlada desde ambas plantas.
3. Fase
Lo que queremos hacer:
Controlar los movimientos de subida y bajada del ascensor desde ambas plantas.
.
El circuito:
Ante la imposibilidad de controlar el ascensor con 2 llaves de cruce, sustituimos dicho mecanismo por pulsadores abiertos y cerrados conectados a relés con 2 contactos conmutados como indica la figura.
.
A.- Un relé lo utilizaremos para alimentar el motor y realizar su inversión de giro. El doble contacto conmutado sustituirá a la llave de cruce. A este le llamaremos “relé de fuerza”
B.- El segundo relé será utilizado para realizar el enclavamiento, de forma que al dejar de accionar el pulsador de subida el motor continúe en marcha. A este le llamaremos “relé de auxiliar”.
Como el control del ascensor se realizará desde ambas plantas, será necesario poner 2 pulsadores, uno para subida y otro para bajada. Los pulsadores normalmente cerrados se conectan en serie y los pulsadores normalmente abiertos se conectan en paralelo.
Por lo tanto el circuito final será el de la figura:
Este diseño presenta la siguiente particularidad: Si el ascensor está en marcha y se interrumpe la alimentación de la pila, al volver a alimentar el circuito, el ascensor se sitúa automáticamente en la planta baja.

Para la construcción del ascensor son necesarios 2 relés con las siguientes características:
Alimentación de la bobina idéntica a la del motor. (ejemplo 5v ó 12v).
Uno de ellos deberá tener un contacto doble conmutado.
El otro solamente necesita un contacto abierto
Podemos utilizar relés de tipo comercial, pero hemos decidido construir nuestro propio relé.
Materiales necesarios:
1 Tapón de plástico 1 chincheta 1 hoja de sierra partida Varios clavos 1 tornillo de 8mm con 2 tuercas y 2 arandelas Varios metros de cable esmaltado Varios metros de conductor de 0.75 mm2 1 muelle
Funcionamiento:
Cuando el electroimán esta desconectado de la alimentación, los contactos se encuentran en estado de reposo de la forma indicada en la figura. Si la bobina es alimentada con una batería, el electroimán atrae la hoja de sierra más próxima cambiando la posición del doble contacto.
El relé auxiliar será de similares características pero utilizando solamente el contacto abierto de uno de los conmutadores.
Construcción del electroimán El electroimán lo construiremos sobre un tornillo al que enrollaremos el hilo esmaltado con unas 300 vueltas aproximadamente. Experimentalmente se puede comprobar que a medida que aumentemos el número de vueltas disminuye la intensidad de corriente consumida por la bobina. Por lo tanto para optimizar el montaje es necesario hacer varias pruebas con electroimanes y conseguir que las baterías no se agoten rápidamente o las fuentes de alimentación no estén continuamente al límite. Pero esto sería el trabajo de otra unidad.
El circuito completo:

viernes, 31 de octubre de 2008


MATERIAL:
-1 Regleta
-1 Portafusible y fusible
-1 Interruptor
-2 Portalámparas
-2 Bombillas
-Cable rígido de 1,5 mm
-Tornillos
-Tablero de contrachapado de 68 x 50 cm y 15 mm de grosor





DESARROLLO:
El esquema del circuito el encendido y apagado de dos lámparas en serie. El fusible protege a las lámparas de cualquier posible cortocircuito y el interruptor nos sirve para apagar o encender las lámparas desde cualquier distancia. Ten presente que al colocar dos lámparas en serie aumenta la resistencia de los filamentos por lo cual las lámparas lucirán menos. Cualquiera de ellas al quitarla apagará el circuito.

Como facer un calentador solar


Material
Antena parabólica vieja (de las que se utilizan para ver la televisión por satélite)
Papel de alumnio (del que se utiliza para envolver los alimentos
Una barra de pegamento para papel
Alambre
Termómetro de cocina
Puede que no re resulte fácil conseguir la antena parabólica. Puedes sustituirla también por una superficie circular, por ejemplo hay unos envases de "corcho blanco" (porexpan) que tienen esa forma
Cómo hacerlo
Tan sólo hay que forrar la antena con el papel de aluminio. Por ejemplo, puedes huntar su superficie con el pegamento para que no se pueva el papel. Hay que tener mucho cuidado de que no queden arrugas al colocarlo. Cuántas más arrugas haya más se dispersa la luz y más débil será el efecto.
En el foco puedes colocar un vaso con agua con un termómetro y observar cómo sube la temperatura una vez puesto el dispositivo al Sol. También puedes pasar lentamente lña mano buscando cuales son las zonas más calientes.
La superficie parabólica debe orientarse hacia el Sol, de forma que los rayos lleguen paralelos al eje de la parábola. Para ello basta con que la barra que sujeta el sensor apunte hacia el Sol. Una buena forma de orientar el dispositivo es conseguir que la barra no proyecte sombra sobre la parábola.

viernes, 24 de octubre de 2008

Atardecer Caserero


Cada vez es más extraño ver el atardecer. Y no es porque algún extraño fenómeno metereológico o estelar lo impida. Sencillamente es que al común de los mortales la mágica hora del crepúsculo les pilla trabajando.
Por ello, si además de vivir la ilusión de ver cómo el sol se pone y, además, la de tener un poco más del día a vuestra disposición esta lámpara os vendrá que ni pintada.
Su exagerado globo, sus falsas nubes, su mando regulador de intensidad de luz… todo pensado para que románticos impenintentes, poetas desesperanzados y amantes que sólo se ven dos horas al día, cuando vuelven de sacrificar su tiempo en tareas poco gratificantes.
¡Ay, Dios mío! ¿Dónde estamos llegando?

A tecnoloxia esta acabando....


viernes, 17 de octubre de 2008

viernes, 10 de octubre de 2008